Abstract

The lubrication mechanism of iron-based materials by C18 fatty acids was investigated using experimental studies and computer simulations. In part I of this work [S. Loehlé et al., Trib. Int. 82(2015)218–227], the adsorption of fatty acids on iron oxide and the conditions to generate a strongly bonded Self-Assembled Monolayer (SAM) were studied. In this second part, the influence of several parameters on this adsorption mechanism of C18 fatty acids on steel-based surfaces was investigated. Among them, the effect of the degree of unsaturation in the alkyl chain, as well as the impact of the density of molecules adsorbed on the surface and the influence of the substrate composition (type of iron oxide/hydroxide), were examined. Then, the tribological behavior of adsorbed SAM was studied. It was confirmed that unsaturation in the alkyl chain leads to steric effects that inhibit the formation of well-organized monolayers and increase friction. The importance of the substrate composition on the adsorption mechanism of fatty acids on steel-based surfaces was also highlighted. Simulation results provide new insight into the in situ behavior of the molecules inside the contact, adding to the understanding of their tribological behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.