Abstract
To the best of our knowledge, all nonlinearities in the known nonlinear integrable systems are either local or nonlocal. A natural problem is whether there exist some nonlinear integrable systems with both local and nonlocal nonlinearities, and how to solve this kinds of spectral nonlinear integrable systems with both local and nonlocal nonlinearities. Recently, some novel mixed local-nonlocal vector Schrödinger equations are presented, which are different from the single local and nonlocal coupled Schrödinger equation. We investigate the Darboux transformation of mixed local-nonlocal vector Schrödinger equations with a spectral problem. Starting from a special Lax pairs, the mixed local-nonlocal vector Schrödinger equations are constructed. We obtain the one- and two- and N-soliton solution formulas of the mixed local-nonlocal vector Schrödinger equations with N-fold Darboux transformation. Based on the obtained solutions, the propagation and interaction structures of these multi-solitons are shown, the evolution structures of the one-solitons are exhibited, the overtaking elastic interactions among the two-breather solitons are considered. We find that unlike the local and nonlocal cases, the mixed local-nonlocal vector Schrödinger equations have some novel results. The results in this paper might be helpful for understanding some physical phenomena described in plasmas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.