Abstract

To cope with ever increasing and more heterogeneous traffic demands, today’s optical backbone networks are expected to support mixed line rates (MLR) over different wavelength channels. MLR networks can be designed to provide flexible rate assignments to low-bit-rate services and high-bit-rate services in a cost-effective manner. But with increasing number of wavelengths in the network, aggregating wavelengths into wavebands can further reduce the network cost.In this study, we incorporate the idea of waveband switching in MLR network design. Wavebanding or grouping of optical paths reduces the optical switch size at the optical cross-connects (OXCs). When several lightpaths share several common links, they can be grouped together and routed as a single waveband. For optical bypass at a transit node, only two optical ports are required for each waveband, hence reducing the port cost. It can be a challenge for an MLR network to waveband wavelengths of different line rates that have different transmission reaches. In our design, we present a suitable switching architecture and propose an efficient and cost-effective approach for wavebanding in an MLR network. The design problem is formulated as a mixed integer linear program (MILP) where the objective is to minimize transponder cost and port cost. A heuristic algorithm for wavebanding in MLR networks is provided. To further optimize our solution, we also present a Simulated Annealing algorithm for wavebanding. Our results show a significant improvement in cost savings compared to single-line-rate (SLR) networks with wavebanding and an MLR network employing only wavelength switching.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call