Abstract

Wind-induced mixing forms the surface mixed layer (ML) above the stratified interior oceans. The ML depth (MLD), a key quantity for several upper ocean processes such as the air-sea interaction and primary production of phytoplankton biomass, is often scaled as $U_{*}/\sqrt {Nf}$, where U∗ is the friction velocity, N is the Brunt-Vaisala frequency, and f is the Coriolis parameter. Here, we performed large-eddy simulations (LESs) to evaluate this scaling. It was found that the ML deepens rapidly until one-half inertial period (0.5Tf) by which the MLD becomes $1.6 - 1.7 U_{*}/\sqrt {Nf}$. Thereafter, the ML deepening slows down but never stops, and the MLD keeps increasing gradually. The MLDs at Tf, 1.5Tf, and 5Tf become greater than those at 0.5Tf by 6.2 %, 16 %, and 40 %, respectively. Therefore, time-dependent scaling of the MLD is necessary for more quantitative estimates than the classical theory. LESs performed with several U∗, N, and f showed that the deepening rate of the ML depends on the Rossby number and the Froude number. The present study proposes time-dependent scalings of the ML deepening rate and the MLD as a function of the Rossby number and the Froude number, which cover the classical scaling but can be extended even after 0.5Tf.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call