Abstract

A series of the high-entropy (Co,Cu,Mg,Ni,Zn)1-xLixO oxides with a lithium substitution level of x = 0, 0.05, 0.10, 0.15, 0.20, 0.25, and 0.30 is evaluated in terms of the crystal structure, morphology and transport properties, with thorough studies aimed at elucidation of the nature of different contributions to the total electrical conductivity. It is found that cubic Fm-3m structure is preserved in the whole investigated series, with (Co,Cu,Mg,Ni,Zn)0.8Li0.2O composition showing a high internal strain, supporting to some degree one of the so-called core effects, anticipated for the high-entropy materials. For samples with Li content x > 0.20 the strain is relaxed by formation of the oxygen vacancies. As unambiguously evidenced by DC polarization experiments and measured impedance spectroscopy data with ionically-blocking Au and reversible Li electrodes used, the previously reported in the literature transition to the lithium superionic conductivity in the Li-rich compounds, up to σi ≈ 1–10⋅10−3 Scm−1, is more complex, with emergence of the electronic conduction as well, reaching similar magnitude for (Co,Cu,Mg,Ni,Zn)0.7Li0.3O. The observed behavior upon increase of lithium concentration (x) can be explained by a qualitative change of the nature of the electronic and ionic defects present in (Co,Cu,Mg,Ni,Zn)1-xLixO series, with initial oxidation of 3d metals (mainly Co), followed by possible formation of the interstitial lithium, and final emergence of the oxygen vacancies. Furthermore, the recorded electrochemical properties of (Co,Cu,Mg,Ni,Zn)0.7Li0.3O lithium cell electrode, suggesting presence of intercalation-like behavior at the initial stages of lithiation, confirm the proposed mixed ionic-electronic conductivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call