Abstract
Conjugated polymers offer a number of unique and useful properties for use as battery electrodes, and recent work has reported that conjugated polymers can exhibit excellent rate performance due to electron transport along the polymer backbone. However, the rate performance depends on both ion and electron conduction, and strategies for increasing the intrinsic ionic conductivities of conjugated polymer electrodes are lacking. Here, we investigate a series of conjugated polynapthalene dicarboximide (PNDI) polymers containing oligo(ethylene glycol) (EG) side chains that enhance ion transport. We produced PNDI polymers with varying contents of alkylated and glycolated side chains and investigated the impact on rate performance, specific capacity, cycling stability, and electrochemical properties through a series of charge-discharge, electrochemical impedance spectroscopy, and cyclic voltammetry measurements. We find that the incorporation of glycolated side chains results in electrode materials with exceptional rate performance (up to 500C, 14.4 s per cycle) in thick (up to 20 μm), high-polymer-content (up to 80 wt %) electrodes. Incorporation of EG side chains enhances both ionic and electronic conductivities, and we found that PNDI polymers with at least 90% of NDI units containing EG side chains functioned as carbon-free polymer electrodes. This work demonstrates that polymers with mixed ionic and electronic conduction are excellent candidates for battery electrodes with good cycling stability and capable of ultra-fast rate performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.