Abstract

The conversion of carbonaceous materials to electricity in a Direct Carbon Fuel Cell (DCFC) offers the most efficient process with theoretical electric efficiency close to 100%. One of the key issues for fuel cells is the continuous availability of the fuel at the triple phase boundaries between fuel, electrode and electrolyte. While this can be easily achieved with the use of a porous fuel electrode (anode) in the case of gaseous fuels, there are serious challenges for the delivery of solid fuels to the triple junctions. In this paper, a novel concept of using mixed ionic electronic conductors (MIEC) as anode materials for DCFCs has been discussed. The lanthanum strontium cobalt ferrite, La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) was chosen as the first generation anode material due to its well known high mixed ionic and electronic conductivities in air. This material has been investigated in detail with respect to its conductivity, phase and microstructural stability in DCFC operating environments. When used both as the anode and cathode in a DCFC, power densities in excess of 50 mW/cm2 were obtained at 804 °C in electrolyte supported small button cells with solid carbon as the fuel. The concept of using the same anode and cathode material has also been evaluated in electrolyte supported thick wall tubular cells where power densities around 25 mW/cm2 were obtained with carbon fuel at 820 °C in the presence of helium as the purging gas. The concept of using a mixed ionic electronic conducting anode for a solid fuel, to extend the reaction zone for carbon oxidation from anode/electrolyte interface to anode/solid fuel interface, has been demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call