Abstract
Abstract Spinel-type Li4Ti5O12 is an attractive anode material for lithium-ion battery applications owing to its high specific energy and almost vanishing mechanical strain upon Li-(de)intercalation. The impact of oxygen non-stoichiometry and aliovalent Mg-doping on the defect chemistry of Li4Ti5O12 has been characterized by quantitative electron paramagnetic resonance (EPR) spectroscopy. The results obtained demonstrate that the Mg2+-ions are amphoterically incorporated at the here studied concentrations on both lithium (MgLi •) and titanium (Mg′′Ti) sites. Mg2+-doping thus simultaneously results in the formation of donor (MgLi •) and acceptor (Mg′′Ti) centers. Furthermore, upon both oxygen deficiency and Mg2+-doping, the concentration of `polaronic'-type Ti3+-states is increased, accounting for the enhanced electronic conductivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.