Abstract

We introduce the Stochastic Maintenance Fleet Transportation Problem for Offshore wind farms (SMFTPO), in which a maintenance provider determines an optimal, medium-term planning for maintaining multiple wind farms while controlling for uncertainty in the maintenance tasks and weather conditions. Since the maintenance provider is typically not the owner of a wind farm, it needs to adhere minimum service requirements that specify the required service. We consider three of such settings: (1) perform all maintenance tasks, (2) allow for a fraction of unscheduled tasks, and (3) incentivize to perform maintenance rather quickly. We provide a two-stage stochastic mixed integer programming model for the three SMFTPO settings, and solve it by means of Sample Average Approximation. In addition, we provide an overview of the, what we discovered, non-aligned modeling assumptions in the literature regarding operational decisions. By providing a series of special cases of the second-stage problem resembling the different modeling assumptions, we aim to establish a common consensus regarding the key modeling decisions to be taken in maintenance planning problems for offshore wind farms. We provide newly constructed, and publicly available, benchmark sets. We extensively compare the different SMFTPO settings and its special cases on those benchmark sets, and we show that the special case reformulations are very effective for solving the second-stage problems. In addition, we find that for particular cases, established modeling techniques result in overestimations and increased running times.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.