Abstract
The recycling of waste products is essential for resource reuse. However, turning operation direction causes significant fatigue to operators handling end-of-life (EoL) products, consequently degrading the recycling efficiency. Accordingly, this study employs responsive collaboration robots to aid operators in turning the operation direction of disassembled products. To solve the human-robot responsive collaboration disassembly line balancing problem (HRRC-DLBP), a mixed integer programming (MIP) model is constructed, and a decoding mechanism is designed in this study. Additionally, a multi-objective enhanced differential evolution algorithm (MEDE) in which the decoding mechanism is incorporated is devised and applied to solve the HRRC-DLBP. The MEDE algorithm is validated by comparing its solution results with those of the MIP model. Finally, the MEDE is used to optimise the EoL printer case for the HRRC-DLBP and the disassembly line balancing problem in which the operation direction is turned by humans (H-DLBP). The optimisation results show that the recycling of EoL products is more efficient using the HRRC-DLBP than employing the H-DLBP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.