Abstract

Energy consumption is expected to be reduced while maintaining high productivity for container handling. This paper investigates a new energy-efficient scheduling problem of automated container terminals, in which quay cranes (QCs) and lift automated guided vehicles (AGVs) cooperate to handle inbound and outbound containers. In our scheduling problem, operation times and task sequences are both to be determined. The underlying optimization problem is mixed-integer nonlinear programming (MINLP). To deal with its computational intractability, a customized and efficient genetic algorithm (GA) is developed to solve the studied MINLP problem, and lexicographic and weighted-sum strategies are further considered. An <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\epsilon $ </tex-math></inline-formula> -constraint algorithm is also developed to analyze the Pareto frontiers. Comprehensive experiments are tested on a container handling benchmark system, and the results show the effectiveness of the proposed lexicographic GA, compared to results obtained with two commonly-used metaheuristics, a commercial MINLP solver, and two state-of-the-art methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.