Abstract

Sleep stage classification plays a pivotal role in predicting and diagnosing numerous health issues from human sleep data. Manual sleep staging requires human expertise, which is occasionally prone to error and variation. In recent times, availability of polysomnography data has aided progress in automatic sleep-stage classification. In this paper, a hybrid deep learning model is proposed for classifying sleep and wake states based on a single-channel electroencephalogram (EEG) signal. The model combines an artificial neural network (ANN) and a convolutional neural network (CNN) trained using mixed-input features. The ANN makes use of statistical features calculated from EEG epochs, and the CNN operates on Hilbert spectrum images generated during each epoch. The proposed method is assessed using single-channel Pz-Oz EEG signals from the Sleep-EDF database Expanded. The classification performance on four randomly selected individuals shows that the proposed model can achieve accuracy of around 96% in classifying between sleep and wake states from EEG recordings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.