Abstract

This article presents an Expert-guided Mixed-initiative Control Switcher (EMICS) for remotely operated mobile robots. The EMICS enables switching between different levels of autonomy during task execution initiated by either the human operator and/or the EMICS. The EMICS is evaluated in two disaster-response-inspired experiments, one with a simulated robot and test arena, and one with a real robot in a realistic environment. Analyses from the two experiments provide evidence that: (a) Human-Initiative (HI) systems outperform systems with single modes of operation, such as pure teleoperation, in navigation tasks; (b) in the context of the simulated robot experiment, Mixed-initiative (MI) systems provide improved performance in navigation tasks, improved operator performance in cognitive demanding secondary tasks, and improved operator workload compared to HI. Last, our experiment on a physical robot provides empirical evidence that identify two major challenges for MI control: (a) the design of context-aware MI control systems; and (b) the conflict for control between the robot’s MI control system and the operator. Insights regarding these challenges are discussed and ways to tackle them are proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.