Abstract

Charge balance, concentration quenching, and exciton confinement are the most important factors for realizing the use of thermally activated delayed fluorescence (TADF) emitters for organic light-emitting diodes. Red-orange organic light-emitting diodes of a TADF emitter 2-[4 (diphenylamino)phenyl]-10,10-dioxide-9H-thioxanthen-9-one (TXO-TPA) have been reported by doping in a mixed p-type host system of poly(N-vinylcarbazole) (PVK) and 1,3-bis(N-carbazolyl)benzene (mCP) via solution-processed. We have demonstrated the peak external quantum efficiency of 9.75%, maximum current efficiency of 19.36 cd/A, and power efficiency of 12.17 lm/W along with a CIE coordinate of (0.45, 0.51). The devices were compared with different doping concentrations of TXO-TPA, and a comparative investigation on the effect of the thickness electron transport layer was studied. The results clearly indicated that this solution-processed TXO-TPA device structure is a promising strategy to develop highly efficient but simple OLED structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.