Abstract

We use mixed Hodge theory to show that the functor of singular chains with rational coefficients is formal as a lax symmetric monoidal functor, when restricted to complex schemes whose weight filtration in cohomology satisfies a certain purity property. This has direct applications to the formality of operads or, more generally, of algebraic structures encoded by a colored operad. We also prove a dual statement, with applications to formality in the context of rational homotopy theory. In the general case of complex schemes with non-pure weight filtration, we relate the singular chains functor to a functor defined via the first term of the weight spectral sequence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.