Abstract
<p style='text-indent:20px;'>The original Hegselmann-Krause (HK) model consists of a set of <inline-formula><tex-math id="M1">\begin{document}$ n $\end{document}</tex-math></inline-formula> agents that are characterized by their opinion, a number in <inline-formula><tex-math id="M2">\begin{document}$ [0, 1] $\end{document}</tex-math></inline-formula>. Each agent, say agent <inline-formula><tex-math id="M3">\begin{document}$ i $\end{document}</tex-math></inline-formula>, updates its opinion <inline-formula><tex-math id="M4">\begin{document}$ x_i $\end{document}</tex-math></inline-formula> by taking the average opinion of all its neighbors, the agents whose opinion differs from <inline-formula><tex-math id="M5">\begin{document}$ x_i $\end{document}</tex-math></inline-formula> by at most <inline-formula><tex-math id="M6">\begin{document}$ \epsilon $\end{document}</tex-math></inline-formula>. There are two types of HK models: the synchronous HK model and the asynchronous HK model. For the synchronous model, all the agents update their opinion simultaneously at each time step, whereas for the asynchronous HK model, only one agent chosen uniformly at random updates its opinion at each time step. This paper is concerned with a variant of the HK opinion dynamics, called the mixed HK model, where each agent can choose its degree of stubbornness and mix its opinion with the average opinion of its neighbors at each update. The degree of the stubbornness of agents can be different and/or vary over time. An agent is not stubborn or absolutely open-minded if its new opinion at each update is the average opinion of its neighbors, and absolutely stubborn if its opinion does not change at the time of the update. The particular case where, at each time step, all the agents are absolutely open-minded is the synchronous HK model. In contrast, the asynchronous model corresponds to the particular case where, at each time step, all the agents are absolutely stubborn except for one agent chosen uniformly at random who is absolutely open-minded. We first show that some of the common properties of the synchronous HK model, such as finite-time convergence, do not hold for the mixed model. We then investigate conditions under which the asymptotic stability holds, or a consensus can be achieved for the mixed model.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.