Abstract

We investigate the ground state properties of Invar alloys via detailed study of the electronic structure of Fe1−xNix alloys (x = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.9) employing x-ray photoelectron spectroscopy (XPS). While all the alloys exhibit soft ferromagnetic behavior with Curie temperature much higher than the room temperature, the results for invar alloy, Fe0.6Ni0.4 exhibit anomalous behavior. Moreover, the magneto-resistance of the Invar alloy becomes highly negative while the end members possess positive magneto-resistance. The core level spectra of the Invar alloy exhibit emergence of a distinct new feature below 20 K while all other Fe-Ni alloys exhibit no temperature dependence down to 10 K. Interestingly, the shallow core level spectra (3s, 3p) of Fe and Ni of the Invar alloy reveal stronger deviation at low temperatures compared to the deep core levels (2s, 2p) indicating crystal field effect. It appears that there is a large precipitation of antiferromagnetic γ′ phase below 20 K possessing low magnetic moment (0.5μB) on Fe within the α phase. The discovery of negative magneto-resistance, anomalous magnetization at low temperature and the emergence of unusual new features in the core levels at low temperature provide an evidence of mixed phase in the ground state of Invar alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.