Abstract

Numerical simulations of waves in highly heterogeneous media have important applications, but direct computations are prohibitively expensive. In this paper, we develop a new generalized multiscale finite element method with the aim of simulating waves at a much lower cost. Our method is based on a mixed Galerkin type method with carefully designed basis functions that can capture various scales in the solution. The basis functions are constructed based on some local snapshot spaces and local spectral problems defined on them. The spectral problems give a natural ordering of the basis functions in the snapshot space and allow systematically enrichment of basis functions. In addition, by using a staggered coarse mesh, our method is energy conserving and has block diagonal mass matrix, which are desirable properties for wave propagation. We will prove that our method has spectral convergence, and present numerical results to show the performance of the method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.