Abstract
The complementing strengths of Constraint (Logic) Programming (CLP) and Mixed Integer Programming (IP) have recently received significant attention. Although various optimization and constraint programming packages at a first glance seem to support mixed models, the modeling and solution techniques encapsulated are still rudimentary. Apart from exchanging bounds for variables and objective, little is known of what constitutes a good hybrid model and how a hybrid solver can utilize the complementary strengths of inference and relaxations. This paper adds to the field by identifying constraints as the essential link between CLP and IP and introduces an algorithm for bidirectional inference through these constraints. Together with new search strategies for hybrid solvers and cut-generating mixed global constraints, solution speed is improved over both traditional IP codes and newer mixed solvers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.