Abstract
This chapter presents two novel approaches for the identification of Takagi-Sugeno fuzzy models with time variant and time invariant features. The mixed fuzzy clustering (MFC) algorithm is used for determining the parameters of Takagi-Sugeno fuzzy models (FMs) in two different ways: (1) MFC FM, where the antecedent fuzzy sets are determined based on the partition matrix generated by the mixed fuzzy clustering algorithm; (2) FCM–UMFC FM, where the input features are transformed using MFC and the antecedent fuzzy sets are derived using fuzzy c-means (FCM). The fuzzy modeling approaches are tested on four health care applications for the classification of critically ill patients: administration of vasopressors in pancreatitis and pneumonia patients, mortality in septic shock and early readmissions. Both approaches increase the performance of Takagi-Sugeno based on FCM, in all datasets. In particular, the best performer, FCM–UMFC FM, achieves notable improvements in the four datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.