Abstract
Mammary gland and liver microsomes of lactating rats were examined for the components of mixed function oxidase and related enzyme activities. Cytochrome b 5, NADH- and NADPH-dependent cytochrome c reductase activities were 15-, 6- and 10-fold lower, respectively, in the mammary gland than in the liver microsomes. The determination of cytochrome P-450 (P-448) in the mammary gland microsomes required elimination of the spectral interferences by hemoglobin and cytochrome aa 3. The presence of the latter in this fraction was also shown by cytochrome c oxidase activity. Cytochrome aa 3 was reduced by anaerobic incubation of mammary gland microsomes, in the presence of antimycin A, with sodium succinate, phenazine ethosulfate, and sodium ascorbate for 30 min at room temperature. Spectral resolution of the dithionite-reduced cytochrome P-450 (P-448) carbon monoxide complex occurred 30 min after gassing. The basal level of cytochrome P-450 was about 500-fold greater in the liver than in the mammary gland microsomes. Pretreatment of lactating rats with the inducers of hepatic cytochrome P-448, 3-methylcholanthrene and β-naphthoflavone, increased the cytochrome content 3- to 10-fold and 2-fold, in the mammary gland and liver microsomes, respectively. The induction of cytochrome P-448 in microsomes of both tissues was also shown by type I binding spectra obtained with N-2-fluorenylacetamide. Using hydroxylation of benzo[ a]pyrene and N-2-fluorenylacetamide as a measure of mixed function oxidase activity, we found that the basal activities, which were 4- to 8-fold greater in the liver microsomes, were increased in both tissues after treatment of rats with the inducers. The induced activities were inhibited by 0.1 mM α-napthoflavone in vitro, indicating a dependence on cytochrome P-448. The data suggest that the mammary gland, an extrahepatic target for carcinogens, is capable of their metabolism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.