Abstract
We study a class of models at the interface between statistics and numerical analysis. Specifically, we consider nonparametric regression models for the estimation of spatial fields from pointwise and noisy observations, which account for problem-specific prior information, described in terms of a partial differential equation governing the phenomenon under study. The prior information is incorporated in the model via a roughness term using a penalized regression framework. We prove the well-posedness of the estimation problem, and we resort to a mixed equal order finite element method for its discretization. Moreover, we prove the well-posedness and the optimal convergence rate of the proposed discretization method. Finally the smoothing technique is extended to the case of areal data, particularly interesting in many applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.