Abstract

Considering absolute log returns as a proxy for stochastic volatility, the influence of explanatory variables on absolute log returns of ultra high frequency data is analysed. The irregular time structure and time dependency of the data is captured by utilizing a continuous time ARMA(p,q) process. In particular, we propose a mixed effect model class for the absolute log returns. Explanatory variable information is used to model the fixed effects, whereas the error is decomposed in a non-negative Lévy driven continuous time ARMA(p,q) process and a market microstructure noise component. The parameters are estimated in a state space approach. In a small simulation study the performance of the estimators is investigated. We apply our model to IBM trade data and quantify the influence of bid-ask spread and duration on a daily basis. To verify the correlation in irregularly spaced data we use the variogram, known from spatial statistics. Copyright © 2006 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.