Abstract

The favored phase field method (PFM) has encountered challenges in the finite strain fracture modeling of nearly or truly incompressible hyperelastic materials. We identified that the underlying cause lies in the innate contradiction between incompressibility and smeared crack opening. Drawing on the stiffness-degradation idea in PFM, we resolved this contradiction through loosening incompressible constraint of the damaged phase without affecting the incompressibility of intact material. By modifying the perturbed Lagrangian approach, we derived a novel mixed formulation. In numerical aspects, the finite element discretization uses the classical Q1/P0 and high-order P2/P1 schemes, respectively. To ease the mesh distortion at large strains, an adaptive mesh deletion technology is also developed. The validity and robustness of the proposed mixed framework are corroborated by four representative numerical examples. By comparing the performance of Q1/P0 and P2/P1, we conclude that the Q1/P0 formulation is a better choice for finite strain fracture in nearly incompressible cases. Moreover, the numerical examples also show that the combination of the proposed framework and methodology has vast potential in simulating complex peeling and tearing problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call