Abstract
In this paper, we first split the biharmonic equation Δ2 u=f with nonhomogeneous essential boundary conditions into a system of two second order equations by introducing an auxiliary variable v=Δu and then apply an hp-mixed discontinuous Galerkin method to the resulting system. The unknown approximation v h of v can easily be eliminated to reduce the discrete problem to a Schur complement system in u h , which is an approximation of u. A direct approximation v h of v can be obtained from the approximation u h of u. Using piecewise polynomials of degree p?3, a priori error estimates of u?u h in the broken H 1 norm as well as in L 2 norm which are optimal in h and suboptimal in p are derived. Moreover, a priori error bound for v?v h in L 2 norm which is suboptimal in h and p is also discussed. When p=2, the preset method also converges, but with suboptimal convergence rate. Finally, numerical experiments are presented to illustrate the theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.