Abstract

This work demonstrates a mixed-dimensional piezoelectric-gated transistor in the microscale that could be used as a millinewton force sensor. The force-sensing transistor consists of 1D piezoelectric zinc oxide (ZnO) nanorods (NRs) as the gate control and multilayer tungsten diselenide (WSe2) as the transistor channel. The applied mechanical force on piezoelectric NRs can induce a drain-source current change (ΔIds) on the WSe2 channel. The different doping types of the WSe2 channel have been found to lead to different directions of ΔIds. The pressure from the calibration weight of 5 g has been observed to result in an ∼30% Ids change for ZnO NRs on the p-type doped WSe2 device and an ∼-10% Ids change for the device with an n-type doped WSe2. The outcome of this work would be useful for applications in future human-machine interfaces and smart biomedical tools.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.