Abstract

Covalent heptazine frameworks (CHFs) are widely utilized in the recent years as potential photocatalysts. However, their limited conjugated structures, low crystallinity and small surface areas have limited the practical photocatalysis performance. Along this line, we report herein the synthesis of a kind of mixed crystalline CHF (m‐CHF‐1) with built‐in heterojunction structure, which can efficiently catalyze the formic acid dehydrogenation by visible light driven photocatalysis. The m‐CHF‐1 is synthesized from 2,5,8‐triamino‐heptazine and dicyanobenzene (DCB) in the molten salts, in which DCB plays as organic molten co‐solvent to promote the rapid and ordered polymerization of 2,5,8‐triamino‐heptazine. The m‐CHF‐1 is formed by embedding phenyl‐linked heptazine (CHF‐Ph) units in the poly(heptazine imide) (PHI) network similar to doping. The CHF‐Ph combined with PHI form an effective type II heterojunction structure, which promote the directional transfer of charge carriers. And the integration of CHF‐Ph makes m‐CHF‐1 have smaller exciton binding energy than pure PHI, the charge carriers are more easily dissociated to form free electrons, resulting in higher utilization efficiency of the carriers. The largest hydrogen evolution rate reaches a value of 42.86 mmol h‐1 g‐1 with a high apparent quantum yield of 24.6% at 420 nm, which surpasses the majority of other organic photocatalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call