Abstract

Researchers in heat transfer field always attempt to find new solutions to optimize the performance of energy devices through heat transfer enhancement. Among various methods which are implemented to reinforce the thermal performance of energy systems, one is utilizing porous media in heat exchangers. In this study, characteristics of laminar mixed convection in a porous two-sided lid-driven square cavity induced by an internal heat generation at the bottom wall have been carried out by using a numerical methodology based on the finite volume method and the full multigrid acceleration. The two-sided and top walls of the enclosure are assumed to have cold temperature while the remaining walls of the bottom wall are insulated. The working fluid is air so that the Prandtl number equates 0.71. The behavior of different physical parameters is shown graphically so that computations have been conducted over a wide range of pertinent parameters; (10[Formula: see text] Ri [Formula: see text]), Darcy number ([Formula: see text] Da [Formula: see text]), internal Rayleigh number ([Formula: see text] Ra[Formula: see text]), the porosity ([Formula: see text]) and the Grashof number (10[Formula: see text] Gr [Formula: see text]). Results revealed that heat transfer mechanism and the flow characteristics inside the enclosure are strongly dependent on the Grashof number. For instance, the best heat transfer rates at the considered values of internal Rayleigh numbers are obtained for a high Grashof number. Furthermore, an increase of internal heat generation (RaI) leads to a higher flow and temperature intensities for Grashof numbers ranging from [Formula: see text] to [Formula: see text] and a specific Richardson number value. Besides, an increase in porosity values ([Formula: see text]) leads to an obvious decrease in the average Nusselt number. Maximum temperature [Formula: see text] is optimal for high ([Formula: see text]) value. A correlation expression for the average Nusselt number relative to the internal heat source was established in function of two control parameters such as Darcy and Richardson numbers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call