Abstract
The numerous applications of non-Newtonian nanofluids in engineering, geothermal and industrial processes motivated us to formulate a comprehensive model for unsteady 3D flow of an Oldroyd-B nanomaterial. Brownian motion and thermophoresis characteristics are also accommodated through a Buongiorno nanofluid model. Moreover, assessments of thermal stratification, chemical reaction, solutal stratification, mixed convection, and prescribed heat source are also elucidated in the combinations of momentum, energy, and concentration equations. The transformed system of ODEs is tackled by homotopy analysis method. A comparison benchmark for limited cases is also constructed to confirm the correctness of whole parametric exploration. It is scrutinized through present communication that intensifying values of Prandtl factor, unsteady factor, heat distribution indices, thermal stratification constraint, mixed convective parameter, and Deborah number for time retardation diminish the temperature of the nanomaterial. Also, escalating amounts of Lewis number, chemically reactive species, Brownian motion parameter, and solutal stratification constraint reduce the concentration profile.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.