Abstract

Combined forced and free convection flow in a fluid saturated inclined plane channel is investigated by taking into account the effect of viscous dissipation. Steady parallel flow is considered assuming that the temperature gradient in the parallel flow direction is constant, and the channel walls are subject to uniform symmetric heat fluxes. Two possible formulations of the Darcy–Boussinesq scheme are considered, based on two different choices of the reference temperature for modelling buoyancy. The first choice is a constant temperature, while the second is a streamwise changing temperature. It is shown that both approaches substantially agree in the formulation of the balance equations for the range of values of the Darcy–Rayleigh number such that viscous dissipation is important. The boundary value problem is solved analytically for any tilt angle, revealing that it admits dual solutions for assigned values of the governing parameters. The rather important effect of viscous dissipation in the special case of adiabatic channel walls is outlined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.