Abstract

The novel features of nanofluids made them potentially significant in heat transfer mechanism occurring in medical and industrial processes like microelectronics, pharmaceutical processes, hybrid engines, thermal management of vehicles, refrigerator, chiller, gas temperature reduction and so forth. These processes bear tendency to enhance thermal conductivity and the convective heat transfer more efficiently than base fluid. This unique aspect made nanofluids the topic of interest in recent time via different fluid flow models. The problem in hand is one such application of nanofluids in peristaltic flow through curved channel. Thus peristalsis of Eyring-Powell nanofluid followed through conservation principles of mass, momentum, energy and concentration has been modeled. The whole system is made coupled via viscous dissipation, mixed convection, thermophoresis and Brownian motion. The complexity of system has been executed through a numerical approach after utilizing small Reynolds number and large wavelength concepts. A striking feature of this study is the activation of velocity and temperature with larger Brownian diffusion, whereas reduction is noticed with advancement in thermophoresis. Moreover the numerically obtained results for compliant walls are compatible with those obtained through other techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.