Abstract
This paper analyzes the collective effects of buoyancy force, thermal radiation, convective heating, and magnetic field on stagnation point flow of an electrically conducting nanofluid past a permeable stretching/shrinking sheet in a porous medium. Similarity transformations are used on the resulting nonlinear partial differential equations to transfer into a system of coupled nonlinear ordinary differential equations. The fourth-fifth-order Runge–Kutta–Fehlberg method with shooting technique is applied to solve numerically. Results are obtained for dimensionless velocity, temperature, and nanoparticle volume fraction as well as the skin friction and local Nusselt and Sherwood numbers. The results indicate the existence of two real solutions for the shrinking sheet in the range of λ c < λ < 0 . The fluid flow stability is maintained by increasing the magnetic field effect, whereas the porous medium parameter inflates the flow stability. It is also noted that both the skin friction coefficient and the local Sherwood number approximately decline with the intensification of thermal radiation within the range from 9.83% to 14% and the range from 48.86% to 78.66%, respectively. It is also evident in the present work that the local Nusselt number upsurges with the porous and suction/injection parameters.
Highlights
Problems of fluid flow and heat transfer in a porous medium have a wide range of applications in various engineering systems. ese problems occur in the storage of radioactive nuclear waste, transpiration cooling, separation processes in chemical industries, filtration processes, transport processes in aquifers, groundwater pollution, geothermal extraction, and fiber insulation as reported by [1]
Even though several works have been testified on fluid flow and heat transfer problems with nanofluid, there seem to be no efforts in the literature to consider the collective effects of buoyancy force, thermal radiation, viscous and porous dissipation, and porous medium on hydromagnetic stagnation point flow of nanofluid flow past a permeable stretching/shrinking sheet with convective boundary conditions
E combined effects of buoyancy force, convective heating, viscous dissipation, and magnetic field parameters on skin friction and heat and mass transfer from a permeable stretching/shrinking sheet in a porous medium are investigated numerically, and obtained results are presented in Tables 1 and 2
Summary
Problems of fluid flow and heat transfer in a porous medium have a wide range of applications in various engineering systems. ese problems occur in the storage of radioactive nuclear waste, transpiration cooling, separation processes in chemical industries, filtration processes, transport processes in aquifers, groundwater pollution, geothermal extraction, and fiber insulation as reported by [1]. Even though several works have been testified on fluid flow and heat transfer problems with nanofluid, there seem to be no efforts in the literature to consider the collective effects of buoyancy force, thermal radiation, viscous and porous dissipation, and porous medium on hydromagnetic stagnation point flow of nanofluid flow past a permeable stretching/shrinking sheet with convective boundary conditions. The inclusion of viscous and porous dissipation terms in the energy equation enables us to examine their effect on fluid flow and heat transfer Such magnetohydrodynamic (MHD) boundary layer fluid flows of an electrically conducting fluid past a stretching/shrinking sheet have various applications in modern metallurgical and metal-working processes such as drawing of continuous filaments through quiescent fluids and annealing and tinning of copper wires as mentioned in [33, 34]. E effects of various parameters on the velocity, temperature, and nanoparticle concentration are presented graphically, and skin friction coefficient, heat, and mass transfer rates are discussed quantitatively
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.