Abstract

The mixed convection fluid flow and heat transfer in lid-driven rectangular enclosures filled with the Al2O3-water nanofluid is investigated numerically. The left and the right vertical walls as well as the top horizontal wall of the enclosure are maintained at a constant cold temperature Tc. The bottom horizontal wall of the enclosure, which moves from left to right, is kept at a constant hot temperature Th, with Th>Tc. The governing equations written in terms of the primitive variables are solved using the finite volume method and the SIMPLER algorithm. Using the developed code, a parametric study is performed and the effects of the Richardson number, the aspect ratio of the enclosure and the volume fraction of the nanoparticles on the fluid flow and heat transfer inside the enclosure are investigated. The results show that at low Richardson numbers, a primary counterclockwise vortex is formed inside the enclosure. More over it is found that for the range of the Richardson number considered, 10-1-101, the average Nusselt number of the hot wall, increases with increasing the volume fraction of the nanoparticles. Also it is observed that the average Nusselt number of the hot wall of tall enclosures is more that to that of the shallow enclosures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.