Abstract
The effect of buoyancy caused by heat generation from a microelectromechanical system (MEMS)-based thermal shear stress sensor is investigated. Due to the small size and relatively low power consumption of such sensors, the buoyancy effect on the overall flow structure is generally negligible. However, its impact on the flow variables such as shear stresses can be significant because such quantities are local and depend on the gradients of the velocity profile next to the sensor. Due to the small dimension of the MEMS sensor, a multiscale modeling approach is adopted to examine the effect of buoyancy on the velocity and wall shear stress profiles. Full-length channel computations are initially performed with finer resolution near the sensor region. Using the boundary conditions derived from the full-length computations, another simulation is performed concentrating on a small region near the shear stress sensor. Based on the temperature distribution in the region of the sensor, the effective thermal length scale is several times the streamwise dimension of the sensor. For a state-of-the-art MEMS sensor dimension of 200\\,\\mu {\\bf m} , the effect of buoyancy on the accuracy of shear stress measurement can be noticeable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.