Abstract

Several researchers are very interested in mixed convection heat transfer because of how widely it is used, particularly for solar thermal collectors, cooling electronic equipment, and chemical process instruments. Using COMSOL-Multiphysics, this article establishes laminar coupled mixed convection heat transfer characteristics across a horizontal channel–cavity architecture. Investigations are conducted into the effect of heat source location on isotherms, velocity distribution, pressure, temperature, average and local Nusselt numbers, and air density. The intake airflow Reynolds number is assumed constant on 2.8814. The enclosure with an isothermally heated right wall in the shape of a “<” as a heat source in three configurations (heat source in the base (1st case), in the upper step (2nd case), and the below step (3rd case). The obtained numerical results present that the higher heat transfer is performed in case two because the heat source is near the contact surface between the channel and the cavity. With the hot sources’ locations being altered, the velocity distribution seems to be unchanged. The increase in the positive y axis has no impact on the pressure distribution throughout the channel. Changing the position of the heated source does not seem to have any impact on the pressure distribution. Air density profiles start to diverge across cases around y = 0.035 m; the third example has a larger value than the second case, and the latter case has a larger value in the density distribution than the former. The contact between the enclosure and the channel (y = 0), where the greatest Nusselt number also occurs, exhibits the highest heat transfer. The maximal Nusselt number falls as y’s absolute value rises.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.