Abstract
The objective of this study is to investigate the effects of mixed convection flow dispersed with a hybrid nanofluid over a permeable shrinking surface past a stagnation-point region considering the influence of second-order velocity slip and variable viscosity on the flow behaviour. For the hybrid nanofluid, water (H2O) is chosen to be the base fluid, while silver (Ag) decorated copper oxide (CuO) nanoparticles are employed as the hybrid component. To achieve the mathematical model, a suitable method of similarity transformation is applied to convert the partial differential equations (PDEs) model into a system of non-linear ordinary differential equations (ODEs). The shooting technique method and bvp4c solver in MAPLE and MATLAB are employed to obtain the analytical solutions of the mathematical model. The obtained results, including the impacts of variable viscosity, second-order velocity slip, mixed convection parameter, suction, shrinking parameter, and nanofluid volume fraction, are presented through tables and figures. The study reveals the existence of dual solutions (upper and lower branches) prior to shrinking sheet . Furthermore, the thermal distribution exhibits mixed behaviours with respect to the variable viscosity number and second-order slip parameter, while demonstrating an increase with the presence of Ag- . The velocity distribution experiences an enhancement with both concentration and variable viscosity number. Stability analysis is then employed and shows that the first branch is stable, whereas the second branch exhibits an opposite outcome.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Advanced Research in Micro and Nano Engieering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.