Abstract
The mixed convection regime is a transitional heat transfer regime between forced convection and natural convection, where both the forced component of flow, and the buoyancy induced component are important. Aiding flow is when buoyancy forces act in the same direction as the forced flow (heated upflow or cooled downflow), while opposing flow is when the buoyancy force is in the opposite direction of the forced flow (cooled upflow or heated downflow). For opposing flow the buoyancy always increases the rate of heat transfer over the forced convection value. For aiding flow, as the heat flux increased, a reduction in heat transfer is encountered until a condition known as laminarization occurs, where the heat transfer is at a minimum value. Further increases in the wall heat flux causes re-transition to turbulence, and increased heat transfer. In this paper, for the first time, experiments were performed to characterize the effect of surface roughness on heat transfer in mixed convection, for the case of aiding flow. A correlation was developed to allow calculation of mixed convection heat transfer coefficients for rough or smooth tubes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.