Abstract

The mixed convection boundary layer of a viscoelastic fluid past a sphere with constant temperature is discussed. The boundary layer equations are an order higher than those for the Newtonian (viscous) fluid and the adherence boundary conditions are insufficient to determine the solution of these equations completely. The governing non-similar partial differential equations are first transformed into dimensionless forms and then solved numerically using the Keller-box method by augmenting an extra boundary condition at infinity. Numerical results are presented for different values of the viscoelastic and mixed convection parametersKand , respectively. It is found that for cases of cooling sphere and heating sphere, the boundary layer separates from the sphere. To the best of our knowledge, this important classical problem has not been studied before for the case of a viscoelastic fluid. Thus, the results are original and new for this type of fluids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.