Abstract
The present paper analyzes the problem of two-dimensional mixed convection boundary layer flow near the lower stagnation point of a cylinder embedded in a porous medium. It is assumed that the Darcy's law holds and that the solid and fluid phases of the medium are not in thermal equilibrium. Using an appropriate similarity transformation, the governing system of partial differential equations are transformed into a system of ordinary differential equations, before being solved numerically by a finite-difference method. We investigate the dependence of the Nusselt number on the solid–fluid parameters, thermal conductivity ratio and the mixed convection parameter. The results indicate that dual solutions exist for buoyancy opposing flow, while for the assisting flow, the solution is unique.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.