Abstract

BackgroundBreast cancer is the most aggressive malignant tumor with high morbidity and mortality. Astragalin, a flavonoid widely found in a variety of edible and medicinal plants, is recorded to possess multiple biological and pharmacological activities. However, its effect of anti-breast cancer has been unknown. MethodsComputational pharmacology was employed to explore the potential mechanism of anti-metastasis and anti-angiogenesis effects of Astragalin on breast cancer. The targets of Astragalin were obtained from TCMSP, Swiss Target Prediction, SEA, BATMAN-TCM, ChemMapper and STITCH databases, and targets of breast cancer were got from OMIM, GeneCards, and DisGeNET databases. Protein-protein interaction network (PPI), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to elucidate the interactions of these two groups of targets. Moreover, the anti-metastasis and anti-angiogenesis effects of Astragalin were validated by in vitro and in vivo experiments using wound healing assay, transwell migration and invasion assay, gelatin zymography assay, tube formation assay, and chick embryo chorioallantoic membrane model. ResultsComputational pharmacology analysis indicated that the effects of Astragalin against breast cancer were mainly related to the regulation of the cell movement, migration, and angiogenesis, and taking AKT, ZEB1, VEGF, and MMP9 as the promising targets. Further experimental pharmacology indicated that Astragalin exerted anti-metastasis and anti-angiogenesis activities on breast cancer, and verified AKT, ZEB1, VEGF, and MMP9 as the key targets. ConclusionAstragalin suppresses the metastasis and angiogenesis of breast cancer, and AKT, ZEB1, VEGF, and MMP9 are the promising targets for Astragalin against breast cancer. Thus, Astragalin is a potential therapeutic agent for breast cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.