Abstract
Magnesium clusters exhibit a pronounced nonmetal-to-metal transition, and the neutral dimer is exceptionally weakly bound. In the present study, we formed pristine Mgnz+ (n = 1-100, z = 1-3) clusters and mixed (C60)mMgnz+ clusters (m = 1-7, z = 1, 2) upon electron irradiation of neutral helium nanodroplets doped with magnesium or a combination of C60 and magnesium. The mass spectra obtained for pristine magnesium cluster ions exhibit anomalies, consistent with previous reports in the literature. The anomalies observed for C60Mgn+ strongly suggest that Mg atoms tend to wet the surface of the single fullerene positioning itself above the center of a pentagonal or hexagonal face, while, for (C60)mMgnz+, the preference for Mg to position itself within the dimples formed by fullerene cages becomes apparent. Besides doubly charged cluster ions, with the smallest member Mg22+, we also observed the formation of triply charged ions Mgn3+ with n > 24. The ion efficiency curves of singly and multiply charged ions exhibit pronounced differences compared to singly charged ions at higher electron energies. These findings indicate that sequential Penning ionization is essential in the formation of doubly and triply charged ions inside doped helium nanodroplets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.