Abstract

A method to design a diffuser augmented wind turbine (DAWT) is proposed, using as a guiding point the optimal pressure drop at the turbine. The use of concepts and expressions derived from a 1D analytic model helped to reduce the number of computational fluid dynamics simulations needed to find the optimal configuration. The proposed configuration can extract energy from the flow with the same efficiency as the state-of-the-art shrouded wind turbine (SWT) configurations but generating a significantly smaller wake, which makes this configuration a good candidate for wind farms or tidal applications. Furthermore, as a product of the 1D model, universal curves for the power coefficient have been obtained, as a function of the thrust coefficient, or disk loading, which have been compared with numerical and experimental results, showing a good agreement. Finally, the maximum ideal power coefficient has been found for a given configuration, which helps to estimate the margin for improvement of an actual design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.