Abstract

The authors consider boundary value problems for the Navier–Stokes system in a polyhedral domain, where different boundary conditions (in particular, Dirichlet, Neumann, slip conditions) are arbitrarily combined on the faces of the polyhedron. They prove existence and regularity theorems for weak solutions in weighted (and nonweighted) L p Sobolev and Holder spaces with sharp integrability and smoothness parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.