Abstract

In this work, a mixed bounce-back boundary scheme of general propagation lattice Boltzmann (GPLB) model is proposed for isotropic advection-diffusion equations (ADEs) with Robin boundary condition, and a detailed asymptotic analysis is also conducted to show that the present boundary scheme for the straight walls has a second-order accuracy in space. In addition, several numerical examples, including the Helmholtz equation in a square domain, the diffusion equation with sinusoidal concentration gradient, one-dimensional transient ADE with Robin boundary and an ADE with a source term, are also considered. The results indicate that the numerical solutions agree well with the analytical ones, and the convergence rate is close to 2.0. Furthermore, through adjusting the two parameters in the GPLB model properly, the present boundary scheme can be more accurate than some existing lattice Boltzmann boundary schemes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call