Abstract

There remains a need to improve sub-1-V CMOS VLSIs with respect to variation in transistor behavior. In this paper, to minimize variation in delay and the noise margin of the circuits in processors, we propose several mixed body bias techniques using body bias generation circuits. In these circuits, either the saturation region of the current between source and drain (I/sub ds/) or the threshold voltage (V/sub t/) of PMOS/NMOS is permanently fixed, regardless of temperature range or variation in process. A test chip that featured these body bias generation circuits was fabricated using a 130-nm CMOS process with a triple-well structure. The mixed body bias techniques which keep the I/sub ds/ of the MOS in the decoder and I/O circuits of a register file fixed and maintain the V/sub t/ of the MOS in both the memory cell and domino circuits of the register file fixed resulted in positive temperature dependence of delay from -40 /spl deg/C to 125 /spl deg/C, 85% reduction of the delay variation compared with normal body bias (NBB) at V/sub DD/ = 0.8 V. In addition, the results using these techniques show a 100-mV improvement in lower operating voltage compared with NBB at -40 /spl deg/C on a 4-kb SRAM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.