Abstract
Mixed biopolymer layers are commonly involved in the stabilization of food emulsions and foams. The interfacial composition and structure of mixed layers are predominantly determined by two mechanistic phenomena—competitive adsorption from mixed solution and cooperative adsorption into multilayers. The surface-active protein components typically dominate primary layers around droplets and bubbles, and the interacting polysaccharides form outer secondary stabilizing layers. This article reviews progress in understanding the factors controlling the nanoscale structure and physico-chemical properties of adsorbed layers in colloidal systems containing mixtures of biopolymers. Contributions from different experimental techniques are described, with particular attention directed towards the role of surface shear rheology in providing information on competitive adsorption of proteins and macromolecular interactions at fluid interfaces. We also consider here the phenomenon of phase separation in mixed protein monolayers, the balance of thermodynamic and kinetic factors in determining biopolymer layer properties, and the involvement of electrostatic interactions in the stabilization of emulsions by protein–polysaccharide complexes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.