Abstract
HypothesisBecause particle-stabilised foams are extremely stable and have a yield stress, a particle-stabilised aqueous foam and a particle-stabilised oil foam can be mixed together to give a stable composite foam which brings together two immiscible liquids. ExperimentsWe have developed a mixed foam system comprised of an olive oil foam with bubbles stabilised using partially fluorinated particles and an aqueous foam with bubbles stabilised using hydrophobic silica particles. The aqueous phase is a mixture of water and propylene glycol. We have studied this system using bulk observations, confocal microscopy and rheology as we vary the proportions of the two foams, the silica particles and the propylene glycol, and the sample age. FindingsThe composite foam resembles an emulsion of one foam within another and is stable for a week or more. The structure and flow properties depend on the proportions of the two phases and the quantities of both silica particles and propylene glycol. Inversion between water-in-oil and oil-in-water is observed, where both phases are foams, driven both by silica wettability and by adding increasing quantities of the dispersed foam. Composites formed at the inversion point are the least stable, showing significant phase separation in less than one week.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.