Abstract

This two-part paper addresses finite element-based computational models for the three-dimensional (3-D) nonlinear analysis of soft hydrated tissues, such as articular cartilage in diarthrodial joints, under physiologically relevant loading conditions. A biphasic continuum description is used to represent the soft tissue as a two-phase mixture of incompressible inviscid fluid and a hyperelastic, transversely isotropic solid. Alternate mixed-penalty and velocity-pressure finite element formulations are used to solve the nonlinear biphasic governing equations, including the effects of strain-dependent permeability and a hyperelastic solid phase under finite deformation. The resulting first-order, nonlinear system of equations is discretized in time using an implicit finite difference scheme, and solved using the Newton-Raphson method. Details of the formulations were presented in Part 1 [I], In Part II, the two formulations are used to develop two-dimensional (2-D) quadrilateral and triangular elements and three-dimensional (3-D) hexahedral and tetrahedral elements. Numerical examples, including those representative of soft tissue material testing and simple human joints, are used to validate the formulations and to illustrate their applications. A focus of this work is the comparison of the alternate formulations for nonlinear problems. While it is demonstrated that both formulations produce a range of converging elements, the velocity-pressure formulation is found to be more efficient computationally.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.