Abstract

Surfaces functionalized with a self-assembled monolayer (SAM) formed from a mixture of two alkylsilanes with different chain lengths have been designed to simultaneously improve the liquid crystal (LC) wettability and promote homeotropic anchoring of the LC. Most chemically functionalized surfaces (e.g., long alkyl chain SAMs) that promote homeotropic alignment of LC possess low surface energy and result in poor LC wettability, inhibiting LC infiltration into microstructured surfaces and sometimes resulting in LC dewetting from the surface. However, a surface modified with a mixed SAM of octadecyltriethoxysilane (C18) and ethyltriethoxysilane (C2) exhibited very low LC contact angle while providing homeotropic anchoring. Ellipsometry was used to correlate the bulk concentration of C18 in the deposition solution to the surface coverage of C18 in the mixed monolayer; these bulk and surface concentrations were found to be equal within experimental uncertainty. The LC contact angle was found to depend nonmonotically with the surface coverage density, with a minimum (14.4 ± 0.1°) at a C18 surface coverage of 0.26 ± 0.08. Homeotropic LC anchoring was achieved at a C18 surface coverage of ≥0.11 ± 0.04, in the regime where a minimum in the LC contact angle was observed. The practical application of this approach to surface modification was demonstrated using a micropillar array sensor substrate. When the array was functionalized with a conventional C18 SAM, the LC did not infiltrate the array and exhibited a contact angle of 47.4 ± 0.5°. However, the LC material successfully infiltrated and wetted the same microstructured substrate when functionalized with a C18/C2 mixed SAM, while still exhibiting the desired homeotropic anchoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.