Abstract

Application programs that exhibit strong locality of reference lead to minimized cache misses and better performance in different architectures. In this paper, we target task-based programs, and propose a novel compiler-based approach that consists of four complementary steps. First, we partition the original tasks in the target application into sub-tasks and build a data reuse graph at a sub-task granularity. Second, based on the intensity of temporal and spatial data reuses among sub-tasks, we generate new tasks where each such (new) task includes a set of sub-tasks that exhibit high data reuse among them. Third, we assign the newly-generated tasks to cores in an architecture-aware fashion with the knowledge of data location. Finally, we re-schedule the execution order of sub-tasks within new tasks such that sub-tasks that belong to different tasks but share data among them are executed in close proximity in time. The experiments show that, when targeting a state of the art manycore system, our compiler-based approach improves the performance of 10 multithreaded programs by 23.4% on average.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.